Ranks of Elliptic Curves

Vladimir Dokchitser

October 11, 2022

	itser

< □ > < □ > < □ > < □ > < □ > < □ > < □ >
October 11, 2022

1/7

э

20th century Elliptic Curves

$$E: y^2 = x^3 + Ax + B$$

Poincaré	
$E(\mathbb{Q})$ is an abelian group.	

Cassels; Selmer...

 $E(\mathbb{Q})/nE(\mathbb{Q}) = \frac{Sel_nE}{\prod \in [n]}.$ Shafarevich-Tate Coni: III finite. Mordell

 $E(\mathbb{Q}) \simeq \mathbb{Z}^r \times (\text{finite}).$

Birch; Swinnerton-Dyer; Tate

BSD Conj: $\operatorname{ord}_{s=1}L(E, s) = r$. True for $E/\mathbb{F}_{\rho}(t)$ if III finite.

Modular forms	Galois Representations	Motives	Iwasawa Theory	(
Heegner: intelligent poi	nt in $E(\mathbb{Q})$	Frey: $y^2 = x(x - A^p)(x + B^p)$ for $A^p + B^p = C^p$		
Kolyvagin		Wiles		
$\operatorname{ord}_{s=1}L(E,s) \leq 1 \implies BSD$ true.		L(E, s) is analytic.		
(Euler Systems)		(Langlands programme)		
V. Dokchitser	Ranks of E	lliptic Curves	October 11, 2022	2/7

21st century Elliptic Curves (so far)

Freitas-Le Hung-Siksek

L(E, s) is analytic for elliptic curves over $\mathbb{Q}(\sqrt{d})$ with d > 0.

Elkies

Found a curve with $r \ge 28$. Found a family of curves with $r \ge 19$.

Mazur-Rubin

By varying *E* we can reduce Sel_2E . For all number fields *K* there is *E* with E(K) = 0.

Bhargava–Shankar

Average size of Sel_2E , Sel_3E and Sel_5E is small. Positive proportions of E have $E(\mathbb{Q})=0$ and $\simeq \mathbb{Z}$.

Skinner

If $\#Sel_pE = p$ then $E(\mathbb{Q}) \cong \mathbb{Z}$ (under some mild hypotheses).

Granville; Park–Poonen–Voight–Wood

Ranks of elliptic curves over \mathbb{Q} are probably bounded.

Dokchitser²

BSD and $Sel_p E$ give compatible predictions for r modulo 2.

Smith(?)

100% of curves $y^2 = x^3 - n^2 x$ with $n \equiv 1, 2, 3(8)$ have rank 0. Open problems $E(\mathbb{Q}) = \Delta \times \mathbb{Z}^r$.

Can the rank r be arbitrarily large?

Do 50% of elliptic curves have rank 0, and 50% rank 1?

Is III_E is finite for a single E with $r \ge 2$?

Is the BSD conjecture for a single *E* with $r \ge 4$?

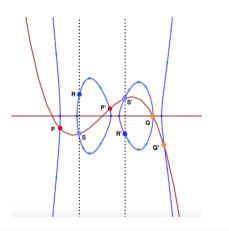
Is $E(\mathbb{Q})$ infinite for all $E: y^2 = x^3 - n^2 x$ with $n \equiv 5, 6$ or 7 mod 8?

Does $E: y^2 + y = x^3 + x^2 + x$ have infinitely many solutions over $\mathbb{Q}(\sqrt[3]{m})$ for all m?

Do all E/\mathbb{Q} have even rank over $\mathbb{Q}(i, \sqrt{17})$?

Explicit arithmetic of Jacobians Curve of genus 2: $C/K: y^2 = f(x), \quad deg(f) = 6.$ Abelian surface: A = Jac(C). **Points in** $A(\overline{K})$: Pairs $[P, P'], P, P' \in C(\overline{K}).$ **Points in** A(K): $P, P' \in C(\overline{K}), \quad Gal(\overline{K}/K)$ -stable. Addition law: Draw y = cubic through P, P', Q, Q'. [P, P']+[Q, Q']+[S, S']=0, [S, S']=[R, R'].Mordell–Weil Theorem

 $A(K) \simeq \Delta \times \mathbb{Z}^r$



Extending the field and extending the curve

 E/\mathbb{Q} an elliptic curve.

- K/\mathbb{Q} number field.
- Then $E(K) \supseteq E(\mathbb{Q})$.
- If K/\mathbb{Q} Galois with Galois group G, then $E(K)^G = E(\mathbb{Q})$.
- $E(\mathbb{Q}) \subset E(\mathbb{Q}(\zeta_p)) \subset E(\mathbb{Q}(\zeta_p^2)) \subset E(\mathbb{Q}(\zeta_p^3))...$ Iwasawa theory.
- $E/\mathbb{Q}(\sqrt{d}) \sim E \times E_d$ Mazur–Rubin'ology.
- *E* over intermediate fields of a D_{2p} -extension D&D parity conjecture.
- $C \to E$ a cover of curves, e.g. $C : y^2 = x^6 + Ax^2 + B$; Then $Jac(C)(\mathbb{Q}) \supseteq E(\mathbb{Q})$. If the cover is Galois with Galois group G, then $Jac(C)(\mathbb{Q})^G = E(\mathbb{Q})$.
- Rational points, heights, L-functions, Selmer groups behave as for number fields.
- Galois representations, local theory, *L*-values... ?
- New applications.

Thank you!

	itser

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
October 11, 2022

э